
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

PHASE-AWARE TRAINING SCHEDULE SIMPLIFIES
LEARNING IN FLOW-BASED GENERATIVE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

We analyze the training of a two-layer autoencoder used to parameterize a flow-
based generative model for sampling from a high-dimensional Gaussian mixture.
Previous work shows that the phase where the relative probability between the
modes is learned disappears as the dimension goes to infinity without an appro-
priate time schedule. We introduce a time dilation that solves this problem. This
enables us to characterize the learned velocity field, finding a first phase where
the probability of each mode is learned and a second phase where the variance
of each mode is learned. We find that the autoencoder representing the velocity
field learns to simplify by estimating only the parameters relevant to each phase.
Turning to real data, we propose a method that, for a given feature, finds intervals
of time where training improves accuracy the most on that feature. Since practi-
tioners take a uniform distribution over training times, our method enables more
efficient training. We provide preliminary experiments validating this approach.

1 INTRODUCTION

In recent years, diffusion models have emerged as a powerful technique for learning to sample
from high-dimensional distributions Sohl-Dickstein et al. (2015); Song et al. (2021); Song & Ermon
(2020); Ho et al. (2020), especially in the context of generating images and recently also for text
Lou et al. (2024). The idea lies in learning, from data samples, a velocity field that pushes noisy
datapoints to clean datapoints. Despite the remarkable performance of these models, there remain
several open questions, including understanding what makes a good noise schedule, which is the
focus of this paper.

We consider the problem of training a neural network to learn the velocity field to generate samples
from a two-mode Gaussian mixture (GM). This serves as a prototypical example to understand how
diffusion models handle learning features at different scales, since the two-mode GM has two scales:
the macroscopic scale of the probability of each mode, and the microscopic scale of the variance of
each mode.

This problem was previously considered by Cui et al. (2024), but their analysis only handles the
balanced two-mode GM (i.e. the probability of each mode is exactly 1/2.) On the other hand, Biroli
et al. (2024) assume access to the exact velocity field and find that the phase where the probability
of each mode is learned disappears as the dimension of the problem grows.

In this work, we first introduce a noise schedule that makes the phase where this probability is
learned not disappear as the dimension goes to infinity. This enables us to extend the analysis
of Cui et al. (2024) to the two-mode GM without the balanced assumption. More precisely, our
contributions are as follows.

• We give an asymptotic characterization of the learned velocity field for learning to generate
the two-mode GM, finding a separation into two phases. We further show that Θd(1)
samples are sufficient to learn the velocity field.

• We show that the neural network representing the velocity field learns to simplify for each
phase. In the first phase, it only concerns estimation of the probability of each mode,
whereas in the second phase, it concerns estimation of the variance of each mode. This
sheds light on the advantage of diffusion models over denoising autoencoders, since the
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sequential nature of diffusion models shown here allows them to decompose the complexity
of the problem.

• We show that the phase transition separating the two phases can be detected from a dis-
continuity in the Mean Squared Error associated to the learning problem, which suggests a
way to find these transitions for general data distributions.

• For real data, this analysis suggests that training more at the times associated with a feature
improves accuracy on that feature. In fact, we propose a method that, given a feature, finds
an interval of time where more training improves accuracy on that feature the most. We
further validate this on the MNIST dataset. We provide the code for the experiments here.

2 RELATED WORKS

Phase transitions of generative models in high dimensions. Several works analyze phase transi-
tions in the dynamics of generative models. Raya & Ambrogioni (2023) find that diffusion models
can exhibit symmetry breaking, where two phases are separated by a time where the potential gov-
erning the dynamics has an unstable fixed point. They give a full theoretical analysis for the data
being two equiprobable point masses in R, and also give a bound for the symmetry breaking time
for the case where the data is a sum of finitely many point masses. Our setting generalizes the case
of two equiprobable point masses in R to two Gaussians in Rd that are not necessarily equiprobable.
Ambrogioni (2023) builds on Raya & Ambrogioni (2023) and shows several connections between
equilibrium statistical mechanics and the phase transitions of diffusion models. Ambrogioni (2023)
further conjectures that accurately sampling near times of ”critical generative instability” affects the
sample diversity. We give an explicit description of these critical times and verify this conjecture
theoretically for sampling (see Proposition 1) and for learning (see Corollary 5) and empirically for
learning (see Section 6). Li & Chen (2024) also formalize the study of critical windows taking the
data to be a mixture of strongly log-concave densities. They give non-asymptotic bounds for the
start and end times of these critical windows, which have a closed form expression for the mixtures
of isotropic Gaussians case. In contrast, we provide sharp asymptotic characterizations for the phase
transition times. Biroli & Mézard (2023) analyze the Curie-Weiss model and analytically character-
ize the speciation time, defined as the time after which the mode that the sample will belong to is
determined. Biroli et al. (2024) generalize the result and find an speciation time ts ∼ 1

2 log(λ) for an
Ornstein-Uhlenbeck process where λ is the largest eigenvalue of the covariance of the data, usually
proportional to d. Montanari (2023) points out a similar phase transition when learning the velocity
field to generate from a two-mode unbalanced Gaussian mixture, leading to problems for accurate
estimation of the data. Montanari (2023) addresses this by using a different neural network to learn
each mode. In the current work, we show that it is not necessary to tailor the network for each mode
if the right time schedule is used. It is worth noting that all these works are about sampling. We
provide a result for sampling in Proposition 1. Building on this, we give results for learning (i.e.
estimating the velocity field through a neural network) which is the main contribution of our paper.

Time-step complexity. Several results give convergence bounds detailing the required time-steps,
score accuracy, and/or data distribution regularity to sample accurately. Benton et al. (2024) show
that at most O(d log2(1/δ)/ϵ2) time steps are required to approximate a distribution corrupted with
Gaussian noise of variance δ to within ϵ2 KL divergence. Chen et al. (2023) study probability flow
ODE and obtain O(

√
d) convergence guarantees with a smoothness assumption. An underlying

assumption in all these works is that the score or velocity field is learned to a certain accuracy. In
the present work, we address this problem in the special case of a Gaussian mixture.

Sample complexity for Gaussian mixtures. Cui et al. (2024) study the learning problem for the
Gaussian mixture in high dimensions and demonstrate that n = Θd(1) samples are sufficient in
the balanced case where the two modes have the same probability. This is done through statistical
physics techniques of computing the partition function and using a sample symmetric ansatz. As we
show, due to the speciation time at d−1/2 which tends to zero as the dimension d grows, this analysis
misses one phase of learning. Gatmiry et al. (2024) show that quasi-polynomial (O(dpoly(log( d+k

ϵ ))))
sample and time complexity is enough for learning k-gaussian mixtures. The data distribution is
more general than the one we consider, but on the other hand we give a Θd(1) sample and time
complexity.
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3 BACKGROUND

Data and flow-based generative model. Consider the two-mode Gaussian mixture (GM)

ρ = pN (µ, σ2Idd) + (1− p)N (−µ, σ2Idd) (1)

where p ∈ (0, 1) and µ ∈ Rd such that ∥µ∥2 = d and σ = Θd(1). A diffusion model for ρ starts with
samples from a simple distribution (say a Gaussian) and sequentially denoises them to get samples
from the data. More precisely, consider the stochastic interpolant

xt = αtx0 + βtx1 (2)

where x0 ∼ N (0, Idd), x1 ∼ ρ, and αt, βt : [0, 1] → R, α0 = 1 = β1, α1 = 0 = β0. Stochastic
interpolants are introduced in Albergo et al. (2023), and they prove that if Xt solves the probability
flow ODE

Ẋt = bt(Xt) with bt(x) = E[ẋt|xt = x] (3)

with X0 ∼ N (0, Idd), we then have Xt
d
= xt for t ∈ [0, 1] and hence Xt=1 ∼ ρ. We call Xt the

flow-based generative model associated to the interpolant It.

Since ρ is a Gaussian mixture, the expression for the exact velocity field bt(x) from equation 3 can
be computed exactly. Our goal is to understand how well a neural network can estimate this velocity
field through samples, in the large dimension d → ∞ limit assuming low sample complexity for the
data n = Θd(1).

Loss function. To fulfill our goal, we rewrite the velocity field as

bt(x) =

(
β̇t −

α̇t

αt
βt

)
f(x, t) +

α̇t

αt
x, (4)

where f(x, t) = E[x1|xt = x] is called the denoiser since it recovers the datapoint x1 from a noisy
version xt. The denoiser is characterized as the minimizer of the loss (see Albergo et al. (2023))

R[f ] =

∫ 1

0

E||f(xt, t)− x1||2dt. (5)

In practice, however, we usually do not have access to the exact data distribution. So we assume
we have a dataset D = {xµ

1}nµ=1 where xµ
1 ∼iid ρ. On the other hand, we have unlimited samples

from x0 ∼ N (0, Idd). Hence, to each data sample xµ
1 we can associate several noise samples xµ,ν

0
with ν = 1, · · · , k. We then denote xµ,ν

t = αtx
µ,ν
0 + βtx

µ
1 . Later in our analysis, we will assume

infinitely many noise samples associated to each data sample, so that we can take expectation with
respect to the noise distribution.

We parameterize the denoiser with a single neural network for each t, which we denote as fθt(x).
We get then an empirical version of the loss in equation 5 R̂({θt}t∈[0,1]) =

∫ 1

0
R̂t(θt)dt where

R̂t(θt) =

n∑
µ=1

k∑
ν=1

||fθt(x
µ,ν
t )− xµ

1 ||2 (6)

Network architecture. We focus on the case where the neural network parameterizing the denoiser
function f(x, t) is a two-layer denoising autoencoder with a trainable skip connection as follows

fθt(x) = ctx+ ut tanh

(
wt · x√

d
+ bt

)
(7)

where θt = {ct, ut, wt, bt}; ct, bt ∈ R; and ut, wt ∈ Rd. The structure of this denoising autoencoder
is a particular case of the U-Net from Ronneberger et al. (2015) and is motivated by the exact
denoiser which can be computed exactly since the data distribution is a Gaussian mixture

E[x1|xt = x] =
βtσ

2

α2
t + σ2β2

t

x+
α2
t

α2
t + σ2β2

t

µ tanh

(
βt

α2
t + σ2β2

t

µ · x+ h

)
(8)

where h is such that eh/(eh + e−h) = p. (See Albergo et al. (2023), Appendix A for the proof.)
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We add to the loss regularization terms for wt and ut, giving

R̂t(θt) =

n∑
µ=1

k∑
ν=1

||fθt(x
µ,ν
t )− xµ

1 ||2 +
λ

2
||ut||2 +

ℓ

2
||wt||2 (9)

Denoting θ̂t the minimizer of this loss, we define

b̂t(x) =

(
β̇t −

α̇t

αt
βt

)
fθ̂t(x) +

α̇t

αt
x. (10)

Using this velocity field, we then run the probability flow ODE

˙̂
Xt = b̂t(X̂t); X̂0 ∼ N (0, Idd). (11)

Our goal is to understand how close X̂2 is to a sample from the Gaussian mixture ρ.

Cui et al. (2024) consider the special case of tied weights ut = wt and bt = 0. This is enough to
learn to sample from the balanced two-mode GM (i.e. p = 1/2) but fails at the two-mode GM for
p ̸= 1/2. This follows because x0 has an even distribution and their choice of tied weights and no
bias yields an odd velocity field which results in an even distribution for xt. If the weights are untied
and the bias is added, the analysis of Cui et al. (2024) still does not work to show that X̂1 has the
correct p for p ̸= 1/2. This is because the gradients for wt and bt vanish as d → ∞ unless special
care is given to the small times where a phase transition related to learning the probability between
the modes occurs, as will be explained next.

Separation into phases. Biroli et al. (2024) show that the generative model with the exact velocity
field from equation 3 with αt =

√
1− t2 and βt = t undergoes a phase transition at the speciation

time ts = 1/
√
d. The speciation time is defined as the time in the generation process after which

the mode that the sample will belong to at the end of the process is determined. Their analysis can
be extended to show that the speciation time is still ts = 1/

√
d if we instead have αt = 1 − t and

βt = t which are the choices in our paper. Since this result is only mentioned as motivation, we will
not prove it.

The analysis of Cui et al. (2024) relies on taking the d → ∞ limit and obtaining a limiting ODE.
Since ts = 1/

√
d goes to zero as d → ∞, their limiting ODE has a singularity at t = 0 and the

possibility of learning the probability of each mode is lost. This is in essence why the analysis of
Cui et al. (2024) can not capture the learning of p for p ̸= 1/2.

We will dilate time so as to make the speciation time ts not disappear as d → ∞. More precisely,
we define

τ(t) =

{
κt√
d

if t ∈ [0, 1]

κ√
d
+
(
1− κ√

d

)
(t− 1) if t ∈ [1, 2].

(12)

This fulfills τ(0) = 0, τ(1) = κ/
√
d, and τ(2) = 1. We prove next that the generative model from

equation 3 with αt = 1− τt and βt = τt has two phases: for t ∈ [0, 1] the probability of each mode
is estimated, and for t ∈ [1, 2] the variance of each mode is estimated.

Proposition 1. Let Xt be the solution to the probability flow ODE from equation 3 with αt = 1− τt
and βt = τt where τt is defined in equation 12. Then for t ∈ [0, 2] we have

Xt −
µ ·Xt

d
µ ∼ N

(
0, σ2

t Idd−1

)
.

where σt is characterized below. We further have the following phases

• First phase: For t ∈ [0, 1], we have limd→∞ σt = 1.

In addition, νt = limd→∞
µ·Xt√

d
fulfills

ν1 ∼ pN (κ, 1) + (1− p)N (−κ, 1).

4
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• Second phase: We have limd→∞ σ2 = σ.

In addition, Mt = limd→∞
µ·Xt

d fulfills

M2 ∼ pκδ1 + (1− pκ)δ−1

where pκ is such that limκ→∞ pκ = p

See Appendix A for the proof of this Proposition. In Appendix E, we give a generalization of the
time dilation formula in equation 12 for a Gaussian mixture with more than two modes.

Without the time dilation, we can not capture the learning of p for p ̸= 1/2 because the first phase
(where this parameter is learned) disappears as d → ∞. The time dilation will allow us to analyze
the phase where p is learned in the d → ∞ limit and hence show that X̂2 recovers p.

We show this in two steps. In Section 4, we characterize the learned parameters of the velocity
field in terms of a few projections, called the overlaps. Then, in Section 5, we combine these
characterizations with Proposition 1 to show that X̂2 recovers the parameters p and σ2 of the two-
mode Gaussian mixture ρ under appropriate limits.

4 LEARNING

In this section, we will characterize θ̂t, the minimizer of the loss from equation 9, which is used to
parameterize the velocity field that yields X̂t (see equation 11.) We take αt = 1 − τt and βt = τt
and analyze θ̂t in the d → ∞ limit. We first analyze the times t ∈ [0, 1] and then t ∈ [1, 2].

4.1 FIRST PHASE

The interpolant from equation 2 in the first phase reads

xµ
t =

(
1− κt√

d

)
xµ
0 +

κt√
d
xµ
1

where t ∈ [0, 1] . To characterize θ̂t = {ct, ut, wt, bt}, we introduce the following overlaps (drop-
ping the dependence on t for notational simplicity.)

pµη =
zµ · w
d

ω =
µ · w
d

r =
∥w∥2

d
qµξ =

xµ
0 · u
d

qµη =
zµ · u
d

m =
µ · u
d

q =
∥u∥2

d
. (13)

We now give equations for the overlaps in the asymptotic d → ∞ limit.
Result 1 (Sharp Characterization of Parameters in First Phase). For any t ∈ [0, 1], the overlaps
associated to θ̂t, the minimizer of the loss from equation 9, satisfy the following in the d → ∞ limit

qη =
σϕ

λ+ nϕ2

m =
nϕs

λ+ nϕ2

c = qξ = pη = 0

q = m2 + nq2η

r = ω2

(λ+ nϕ2)(σ(ϕ′)(ϕ) + n(ϕ′s)(ϕs)) = (n2ϕs
2
+ nσ2ϕ

2
)(ϕ′ϕ)

r̂(λ+ nϕ2)2 = −n((λ+ nϕ2)(σ(ϕ′′)(ϕ) + n(ϕ′′s)(ϕs))− (n2ϕs
2
+ nσ2ϕ

2
)(ϕϕ′)′)

ω(ℓ+ r̂)(λ+ nϕ2)2 = (nκt)((λ+ nϕ2)(σ(ϕ′s)(ϕ) + n(ϕ′)(ϕs))− (n2ϕs
2
+ nσ2ϕ

2
)(ϕ′ϕs))

Here and in what follows, we denote

y =
1

nk

n∑
µ=1

k∑
ν=1

Ezµ,ν [yµ,ν ] = pEzµ,ν [yµ,ν |sµ = 1] + (1− p)Ezµ,ν [yµ,ν |sµ = −1].

5
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See Appendix B.1 for a heuristic derivation of this result, at the level of rigor of theoretical physics.
We next show that the equations for the overlaps simplify in the n → ∞ limit.
Corollary 1 (Parameters given infinite samples). For any t ∈ [0, 1], taking d → ∞ and then n → ∞
gives the following overlaps

tanh(b) = 2
(
p− 1

2

)
,

c = qξ = qη = pη = 0,

m = 1,

ω = κt.

See Appendix B.1.1 for the derivation. Note that the overlaps in the n → ∞ limit do not contain any
information about σ2, showing that the estimation of σ2 happens completely in the second phase.

We now turn to the Mean Squared Error. Define the scaled train and test MSE of the denoiser as

msetrain =
1

dnk

n∑
µ=1

k∑
ν=1

||fθt(x
µ,ν
t )− xµ

1 ||2 msetest =
1

d
E
[
∥fθ̂t(xt)− x1∥2

]
.

Using the above results we characterize the MSE
Corollary 2. In the limit of d → ∞,

msetrain = 1 + σ2 + c2 + qϕ2 − 2sϕ(m+ σqη − cqξ)

msetest = 1 + σ2 + c2 + qϕ2 − 2sϕm

For n → ∞, we get
msetrain = msetest = σ2 + (1− ϕs).

4.2 SECOND PHASE

We now consider times t ∈ [1, 2] which means we have

xµ
t = (2− t)

(
1− κ√

d

)
xµ
0 +

(
κ√
d
+

(
1− κ√

d

)
(t− 1)

)
xµ
1 .

Using the same definitions of overlaps as for the first phase, we find closed-form equations for the
overlaps in the asymptotic d → ∞ limit, and again find the limit as n → ∞ for the overlaps. See
Appendix B.2 for a heuristic derivation of this result
Result 2 (Sharp Characterization of Parameters in Second Phase). For any t ∈ [1, 2], in the
d → ∞ limit, the parameters minimizing the loss from equation 9 satisfy the following equations

qξ =
c(1− τ)

λ+ n

qη =
σ(1− cτ)

λ+ n

m =
n(1− cτ)

λ+ n

q = m2 + nq2ξ + nσ2q2η

c =
τ
(
(1 + σ2)(λ+ n)− (σ + n)

)
(λ+ n)((1− τ2) + (1 + σ2)τ2) + ((1− τ)2 − τ2(σ + n))

where τ = t− 1.
Corollary 3 (Parameters given inifite samples). For any t ∈ [1, 2], taking d → ∞ and then n → ∞
gives the following overlaps

c =
τσ2

1 + (σ2 − 1)τ2
qξ = qη = 0 m = 1− cτ

where τ = t− 1.

In contrast to the first phase, the parameter p does not appear in the overlaps whereas now σ2 does.
Hence, combining Corollaries 1 and 3 shows that the separation into phases can be learned by the
generative model.

We also obtain the MSE for the second phase

6
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Corollary 4. In the limit of d → ∞, we have

msetrain = (1 + σ2)(1− cτ)2 + c2(1− τ)2 + q − 2(1− cτ)(σqη +m) + 2c(1− τ)qξ

msetest = (1 + σ2)(1− cτ)2 + c2(1− τ)2 + q − 2(1− cτ)m

For n → ∞, we get

msetrain = msetest = σ2(1− cτ)2 + c2(1− τ)2.

where τ = t− 1.

In Appendix B.2 we show that combining Corollaries 2 and 4 gives
Corollary 5. Taking d → ∞ then n → ∞

msetest =


σ2 + 4p(1− p) if t = 0

σ2 + (1− ϕ2) if t ∈ (0, 1)

σ2 if t = 1+

0 if t = 2

If we had not dilated time, in the limit of d → ∞ and κ → ∞ the msetest would have a jump from
σ2 + 4p(1− p) at t = 0 to σ2 at t = 0+. By dilating time, we make a transition between these two
values with t ∈ [0, 1] msetest = σ2 + (1− ϕ2) where ϕ2 depends on time.

Remarkably, this result suggests a way to detect phase transitions for a general data distribution.
Indeed, to detect the phase transition we could have as well ensure that the mse was continuous in
the d → ∞ limit. More generally, this suggests that having an mse that decreases smoothly as time
grows would resolve the phase transitions present in the data. We leave the study of this conjecture
to future work.

5 GENERATION

Having characterized the parameters θ̂t, we now show that X̂2 has the right parameters p and σ2 from
the data distribution ρ. Let Xt be the solution to the ODE from equation 3 using the exact denoiser
from equation 8. Assume Xt and X̂t have a shared initial condition Xt=0 = X̂t=0 ∼ N (0, Idd).
Then Xt − X̂t fulfills an ODE with initial condition 0 whose velocity field is in the span of ut and
µ.

Result 1 gives that in the first phase q = m2 + nq2η. This can be explicitly stated as

lim
d→∞

∥u∥2

d
= lim

d→∞

(µ · u
d

)2
+
(η · u

d

)2
where η = σ

∑n
µ=1 z

µ. This means that ut is asymptotically contained in span(µ, η), in the sense
that the projection to the complement of span(µ, η) has asymptotically vanishing norm, for t ∈ [0, 1].
Similarly, from Result 2, we get q = m2 + nq2ξ + nq2η, which means that ut is asymptotically
contained in span(µ, η, ξ) for t ∈ [1, 2] where ξ =

∑
µ s

µxµ
0 . This means that to show that Xt is

close to X̂t, it suffices to bound the projections of Xt − X̂t onto µ, η, and ξ. In fact, we have the
following result (see Appendix C)
Result 3. Let Xt be the solution of the probability flow ODE from equation 3 using the exact
denoiser from equation 8. Let X̂t be the solution using the learned denoiser. Assume Xt=0 =

X̂t=0 ∼ N (0, Idd). Then for w ∈ span(µ, η, ξ), with ∥w∥2 = 1, we have

lim
d→∞

w · (X2 − X̂2)√
d

= O

(
1

n

)
.

For w ∈ span(µ, η, ξ)⊥, with ∥w∥2 = 1, we have

lim
d→∞

w · (X2 − X̂2)√
d

= 0.

7
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Figure 1: We learn the parameters from equation 7 for different choices of interpolant. In all ex-
periments, we take 100 discretization points, train for 5000 epochs, with n = 128, d = 5000, and
p = .8. We then run the probability flow ODE with the learned parameters for K = 2000 realiza-
tions and estimate P(Mt > 0) = p with Mt = µ ·Xt/d. For the non-dilated interpolant in blue, we
use αt = 1− t, βt = t. We predict the speciation to happen near t = 1/

√
5000 ≈ .014 as confirmed

by the experiment since most of the speciation occurs at the first two ODE steps. For the dilated
interpolant in orange, we use αt = 1 − τt, βt = τt, κ = 4. We see the dilated interpolant estimates
p = .8 much better than the non-dilated one.

Corollary 6 (Parameters p and σ2 are estimated correctly). Let X̂t be the solution of the probability
flow ODE from equation 3 using the learned denoiser, starting from X̂0 ∼ N (0, Idd). We have

lim
κ→∞

lim
n→∞

lim
d→∞

µ · X̂2

d
∼ pδ1 + (1− p)δ−1.

For w ⊥ µ, with ∥w∥2 = 1, we have

lim
n→∞

lim
d→∞

w · X̂2√
d

∼ N (0, σ2).

We conclude that the distribution generated using the learned denoiser captures both p and σ2.

6 EXPERIMENTS

6.1 VERIFICATION THAT PARAMETER p IS CAPTURED

To demonstrate the difference between the time dilated and non-dilated interpolants in practice we
construct the following simple experiment. We run Gradient Descent with the Adam optimizer
Diederik (2014) to learn the parameters wt, ct, ut, bt in equation 7 both for αt = 1 − t, βt = t and
the dilated version αt = 1− τt, βt = τt. The results are shown in Figure 1 and suggest time-dilation
is required to estimate the probability of each mode.

The code for this experiment is available here.

6.2 TRAINING A GIVEN FEATURE ON REAL DATA: MNIST

Recall that in the background we mentioned that the analysis of Biroli et al. (2024) shows that taking
αt = 1 − t and βt = t without any time-dilation gives an speciation time ts = 1/

√
d. This then

means that probability of each mode (given by p) can not be captured as d → ∞. Our analysis then
shows that if we dilate time by stretching the interval [0, κ/

√
d] to [0, 1] and the interval [κ/

√
d, 1]

to [1, 2], then we get accurate estimation of p.
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When training diffusion models in practice, we first sample a batch of times t1, · · · , tk uniformly.
We then draw xµ

0 ∼ N (0, Idd), x
µ
1 from our data distribution, and form a noisy sample xµ

tµ =
(1− tµ)xµ

0 + tµxµ
1 for µ = 1, · · · , k. We finally train on the loss

R̂(θ) =

k∑
µ=1

||fθ(xµ
tµ , t

µ)− xµ
1 ||2. (14)

where we took time as a parameter of the network as it is usually done in practice, as opposed to
having a separate network for each time t.

The insight of our analysis is that instead of taking the batch of times uniformly, we can sample more
times near the phase transition associated to a given feature, and in this way improve accuracy on
that feature.

For a given feature, we can find the times where that feature is learned using the U-Turn method
(Sclocchi et al. (2024), Biroli et al. (2024)). Consider a dataset where each sample corresponds to
exactly one of finitely many classes. Examples of this are samples of the GM which correspond to
one of two modes, or samples of MNIST which correspond to one of ten digits. The U-Turn then
consists of starting with a sample from the data, run a backward diffusion model from time t = 1
to t = t0, which noises the sample, and then run the forward diffusion model from time t = t0 to
t = 1 with noise independent from the backward run.

We are then interested in the probability that the sample before the backward and forward passes
belongs to the same class as the sample after them. For t0 ≈ 1, this probability is close to 1. For
t0 ≈ 0, this probability is close to the underlying probability of the diffusion model generating a
sample of the given class. By running this for different t0, we can find at what times it is decided
to what class the samples belong to. Having found those times, our goal is to have a model that
generates samples for each class according to the probabilities that they appear in the dataset. We
can then improve the accuracy of the model on this by training on these times.

As a simple example, we train a U-Net (see Appendix D for details) to parameterize the Variance
Preserving SDE from Song et al. (2021) to generate either the 0 or 1 digits from MNIST. The
dataset we train on consists of 20% 1 digits and 80% 0 digits. We then measure how well is this
model in generating samples that represent this asymmetry. The model is trained on approximately
7400 samples for 9 epochs, by sampling times in [0, 1] uniformly as described in the beginning of
this section. We then generate 18500 new samples running this model using 1000 discretization
steps. 1 Among the 18500 generated samples, 88.2% are digits 0. (For determining this, we used a
discriminator with 99.2% accuracy on MNIST, see Appendix D for details.)

We then test our proposed method. First, we determine at what time the digit that the sample
represents is decided. We do this with the U-Turn method described above. Note that to do this,
we use the model that we already trained. The results are in Figure 2. We find that the times
important for deciding the digit are early in the generation for t ∈ [0.2, 0.6] and mostly concentrated
on t ∈ [0.3, 0.5].

We now train from scratch a model on 7400 samples for 9 epochs as before, except that we do
not sample the times uniformly. We instead sample times with probability 1/2 uniformly in the
interval [0.3, 0.5] and with probability 1/2 uniformly outside that interval. We then generate 18500
new samples with this new model using 1000 discretization steps, and find that 81.0% are 0s. We
similarly consider sampling times with probability 1/2 uniformly in the interval [0.2, 0.6] and with
probability 1/2 outside that interval, generate samples, and find that 81.1% are 0s. This validates
our hypothesis in the simple case of MNIST.

Although our theoretical analysis is for the probability flow ODE on the two-mode GM data dis-
tribution, this example on MNIST shows that the ideas developed here can be useful to the SDE
generative models used in practice for real data.

1This amount of discretization steps is much larger than what is needed for MNIST, and we do it this way
to make sure that the error is not coming from the integration of the SDE but from the training alone.
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Figure 2: For t0 ∈ [0.2, 0.65], we plot the proportion of 0s that we get by doing the U-Turn at time t0
starting from either 0 or 1 at time t = 1. On dashed green, we plot y = .882 which is the estimated
proportion of 0s that the diffusion model generates starting from noise.
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